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17 Highlights 

18 • A topological metric is introduced for comparing differing but related geophysical 

19 fields 

20 • The metric is demonstrated by comparing satellite ocean color data to model salinity 
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21 • The metric allows quantitative comparison of spatial characteristics of observed and 

22 modeled fields 

23 Key words: satellite data; ocean model; ocean color; sea surface salinity; shape 

24 comparison; hausdorff distance 

25 Abstract 

26 The aim of this work is to demonstrate a method for quantifying the agreement between 

27 time-evolving spatial features evident in fields of differing, but functionally related, 

28 variables that are more commonly compared qualitatively via visual inspection. This is 

29 achieved through application of the Modified Hausdorff Distance metric to the evaluation 

30 of ocean model simulations of surface salinity near a river plume using satellite ocean 

31 color data. The Modified Hausdorff Distance is a metric from the field of topology 

32 designed to compare shapes and the methodology provides quantitative assessment of 

33 similarity of spatial fields. The Modified Hausdorff Distance can be applied for 

34 comparison of many geophysical and ecological fields that vary spatially and temporally. 

35 Here, the utility of the metric is demonstrated by applying it to evaluate numerical 

36 simulations of the time-evolving spatial structure of the surface salinity fields from three 

37 ocean models in the vicinity of large riverine sources in the northeast Gulf of Mexico. 

38 Using the Modified Hausdorff Distance, quantitative comparison of modeled sea surface 

39 salinity contours to contours of a gridded satellite-derived ocean color product is made 

40 under the assumption that the modeled fields are related to optically significant quantities 

41 that indicate the spatial extent of riverine influenced water. Three different ocean models 

42 are evaluated and are compared individually to the satellite data. The sea surface salinity 
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43 values and ocean color index values that most closely match (lowest Modified Hausdorff 

44 Distance score) are identified for each model. The Modified Hausdorff Distance scores 

45 for these best pairings are used to both determine which model simulates surface salinity 

46 fields that most closely match the satellite observations and obtain an empirical 

47 relationship between the two variables for each model. Furthermore, the best pairings are 

48 compared between models allowing key differences in the simulated riverine water 

49 distributions to be distinguished. The Modified Hausdorff Distance proves a robust and 

50 useful diagnostic tool that has the potential to be utilized in many geophysical 

51 applications and facilitate the use of satellite ocean color data for quantitative evaluation 

52 of hydrodynamic ocean models. 

53 1 Introduction 

54 For decades satellite sensors have been used to detect the color of the ocean surface by 

55 measuring light reflectance in different spectral bands (McClain, 2009). These ocean 

56 color data products have been utilized to identify and analyze ocean features that affect 

57 pigment and particulate content of the water and hence the ocean color, including oil 

58 spills, algal blooms and river plumes (e.g. Hu et al., 2004; Androulidakis and Kourafalou, 

59 2013; Liu et al. 2013; Hu et al., 2015a). They have also been integrated into observation 

60 and detection systems for harmful algal blooms and oil spills (e.g. Stumpf et al., 2003; 

61 Brekke & Solberg, 2005; Hu et al., 2015b). With both broad spatial and frequent 

62 temporal coverage, satellite ocean color observations also have the potential to be 

63 valuable resources for numerical ocean modeling, however the ocean circulation 

64 modeling community has not fully capitalized on the utility of this data. 
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65 Satellite ocean color data have been used for ocean model assessment qualitatively, 

66 as patterns evident in the ocean color are often similar to, and may generally be visually 

67 compared to, features in dynamical fields (e.g. Binding & Bowers, 2003; Gregg et al., 

68 2003; Chassignet et al., 2006; Liu et al., 2011; Schiller et al., 2011). Quantitative 

69 comparisons generally rely on point-wise differences that demand the same field be used 

70 and/or an empirical relationship between different but related fields is determined (e.g. 

71 Binding & Bowers, 2003; Gregg et al., 2003; Gregg, 2008; Mariano et al., 2011; 

72 Chaichitehrani et al., 2014; Zhang et al. 2014). While the types of statistical measures 

73 derived from point-wise comparisons (e.g. biases or correlations) are useful, they do not 

74 necessarily provide comparison of spatial distributions and/or shape that are related to 

75 circulation patterns or dynamical processes, and neither are they expressly designed for 

76 such a purpose. The objective of this work is to apply and demonstrate the potential of a 

77 metric called the Modified Hausdorff Distance (MHD) to quantitatively compare spatial 

78 and temporal patterns derived from satellite ocean color observations to ocean circulation 

79 models in an effort to more fully utilize the vast amount of remotely sensed 

80 oceanographic data. 

81 2 Background 

82 The MHD originates from the field of topology and is designed specifically to 

83 compare shapes (Dubuisson & Jain, 1994). The MHD and Hausdorff distance, from 

84 which the former is derived, are frequently used in imaging software for object location 

85 and pattern recognition. (Huttenlocher et al., 1993; Huttenlocher & Rucklidge, 1993; 

86 Rucklidge, 1997; Daoudi et al., 1999;  Zhang & Lu, 2004). There has been some 

87 application to analysis of geospatial data, an example being precipitation patterns where 
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88 the Hausdorff distance forms one component of a Forecast Quality Index (e.g. Venugopal 

89 et al., 2005; Nan et al., 2010) and application of the MHD for skill assessment of sea ice 

90 models based on analysis of spatial distribution of sea ice concentration (Dukhovskoy et 

91 al., 2015). However, the metric has not been widely utilized in oceanographic 

92 applications. The particular application considered here compares ocean model surface 

93 salinity fields with satellite ocean color data near a large river source, the Mississippi 

94 River. This presents the opportunity to utilize ocean color data from satellites for 

95 quantitative model assessment and intermodel comparison in a region with high spatial 

96 and temporal variability of the salinity field. 

97 The Mississippi River enters the northeast Gulf of Mexico (NEGoM) through 

98 several channels along the end of the Mississippi Delta. This study focuses on the area 

99 east of the Mississippi Delta, where the shelf is nearly non-existent, and small mesoscale 

100 deep ocean eddies dominate the circulation field over the nearby DeSoto Canyon. The 

101 domain for the analysis presented here extends from approximately 50 km west of the 

102 Mississippi Delta eastward to Apalachicola Bay in North Florida, and from 28°N 

103 northward to the coast (Figure 1). The surface salinity in this region is influenced by 

104 several rivers and is dominated by outflow from the Mississippi River (Figure 2). During 

105 the fall and winter months, the Mississippi River plume tends to be trapped closely to the 

106 coast westward of the study domain (Morey et al., 2003a; Morey et al., 2005). In the 

107 spring and summer, reversal of the climatological wind allows the plume to spread 

108 eastward over the DeSoto Canyon region (Morey et al., 2003b; Walker et al., 2005). 

109 Interaction with circulation features such as the Loop Current and Loop Current Eddies 

110 leads to a complex structure, with salinity contours forming intricate shapes with 
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111 

112 Figure 1: Bathymetry and model domains. (a) Full Gulf of Mexico. The bathymetry is shown 

113 for GoM-HYCOM configuration. Boxes represent domains for the DSC-ROS and NGoM 

114 HYCOM. (b) Subdomain common to all models used for analysis. The bathymetry is shown 

115 for the DSC-ROMS configuration. The squares denote river sources that are simulated in 

116 each model. 
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118 Figure 2: (a) Daily river discharge calculated from US Geological Survey data used for DSC-

119 ROMS transport. NGoM-HYCOM uses the same data source to calculate daily river transport 

120 and has similar variation and magnitude. (b) Monthly climatology used for GoM-HYCOM 

121 river transport.  (c): Temperature climatology calculated from NOAA tides and currents data 

122 used for DSC-ROMS. For river locations see Figure 1. 

123 filaments extending across the domain (Figures 3 and 4, Walker et al., 1996; Morey et al., 

124 2003b; Schiller et al., 2011; Androulidakis & Kourafalou, 2013). The geometry of these 

125 fields presents a challenging system for the MHD to assess, making the region and the 

126 system analyzed an excellent scenario for demonstration and evaluation of the utility of 

127 the metric. 
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128 

129 Figure 3: Example 8-day averaged fields of typical winter (left) and summer (right) OCI (a-
130 b) and SSS fields from GoM-HYCOM (c-d), NGoM-HYCOM (e-f) and DSC-ROMS (g-h). 
131 In the winter, the riverine-influenced water is more coastally trapped. In the summer, the low 
132 salinity/high OCI water spreads out over the region. Animations for the entire time periods 
133 from each of the above can be found at: 
134 http://coaps.fsu.edu/~hhiester/Satellite_colormap.mp4 (satellite), 
135 http://coaps.fsu.edu/~hhiester/GoM-HYCOM_colormap.mp4 (GoM-HYCOM), 
136 http://coaps.fsu.edu/~hhiester/NGoM-HYCOM_colormap.mp4 (NGoM-HYCOM) and 
137 http://coaps.fsu.edu/~hhiester/DSC-ROMS_colormap.mp4 (DSC-ROMS). 

8 

http://coaps.fsu.edu/~hhiester/DSC-ROMS_colormap.mp4
http://coaps.fsu.edu/~hhiester/NGoM-HYCOM_colormap.mp4
http://coaps.fsu.edu/~hhiester/GoM-HYCOM_colormap.mp4
http://coaps.fsu.edu/~hhiester/Satellite_colormap.mp4


 

  

         
             

   
   

   
    

   

138 

139 Figure 4: Examples of contours of the fields shown in Figure 3. The ocean model data have 
140 been regridded to the 4-km grid of the OCI product. Animations for each of the above can be 
141 found at: 
142 http://coaps.fsu.edu/~hhiester/Satellite_contours.mp4 (satellite), 
143 http://coaps.fsu.edu/~hhiester/GoM-HYCOM_contours.mp4 (GoM-HYCOM), 
144 http://coaps.fsu.edu/~hhiester/NGoM-HYCOM_contours.mp4 (NGoM-HYCOM) and 
145 http://coaps.fsu.edu/~hhiester/DSC-ROMS_contours.mp4 (DSC-ROMS). 
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146 3 Data and Methods 

147 This study demonstrates application of the MHD for comparing satellite-derived and 

148 ocean model fields of different, but related quantities. In particular, an ocean color 

149 product derived from satellite optical data is compared to salinity fields from three 

150 different models to evaluate the models’ representations of the distribution of riverine 

151 water. In this section, the MHD and Hausdorff distance (from which the MHD is derived) 

152 are introduced, the ocean color product and the model simulations are described, and the 

153 application of the MHD and diagnostic techniques are detailed. 

154 3.1 The Hausdorff distance 

155 The Hausdorff distance is a topological metric commonly used in the context of 

156 visual imaging for pattern recognition and shape matching, with utility for applications 

157 such as facial recognition (Huttenlocher & Rucklidge, 1993; Huttenlocher, et al., 1993; 

158 Rucklidge, 1997; Daoudi et al., 1999; Zhang & Lu, 2004). The Hausdorff distance is very 

159 sensitive to outliers within a data set and modified versions (the Modified Hausdorff 

160 Distance) of the metric that have a more robust response to both outliers and noise have 

161 been investigated (Dubuisson & Jain, 1994; Mattern et al., 2010). Here, following 

162 Dubuisson & Jain (1994) and Dukhovskoy et al. (2015), the version of the MHD used is 

163 given by 

MHD = ��� � �, � , �(�, �) , (1) 

164 where 

1
� �, � = �(�, �) ; � �, � = ���!∈!� �, � , (2)|�| 

!∈! 
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165 and 

1
� �, � = �(�, �) ; � �, � = ���!∈!� �, � (3)|�| 

!∈! 

166 

167 with A the set of points on one contour, B the set of points on a second contour and d(a,b) 

168 the distance between those points (here, great circle distance, km). In simple terms, it 

169 may be considered to be the largest of the average of the minimum distances between 

170 each point on contour A and contour B and the average of the minimum distances 

171 between each point on contour B and contour A. The MHD increases as the shapes 

172 become increasingly different and decreases as they become more similar. It is noted that 

173 the MHD is a topological distance and d(a,b) in equations 2 and 3 can be any appropriate 

174 distance depending on the application.  However, in general, the value of the MHD 

175 should be viewed simply as a score with a lower value indicating a better match. 

176 The version of the MHD above has been shown to outperform more traditional 

177 statistical approaches such as Root Mean Square Deviation and Mean Dispersion in 

178 sensitivity tests for rotation (within angles <300), translation, scaling and noise 

179 (Dukhovskoy et al., 2015). An appropriate response to these properties is an important 

180 component of application of the metric. Dukhovskoy et al. (2015) show an increase in 

181 MHD score as rotation and translation cause a greater difference in shape, which is 

182 desired for this application. For river plume comparison, orientation and location of 

183 certain features (e.g., filaments) in surface salinity contours are important characteristics 

184 and manifest as differences in rotation (orientation) and translation (location) of contours. 
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185 Dukhovskoy et al. (2015) also show that the MHD is robust to noise, with 

186 contours being shown to be similar (small MHD score) if the amplitude of the noise is 

187 small but also showing an increase in the MHD score (i.e. a difference in the contours) as 

188 the amplitude of the noise grows larger. Robustness to noise is a very useful property for 

189 comparing river plumes. If small-scale features (small-amplitude noise) are diffused and 

190 therefore smoothed out of the contours of one model relative to the contours of another 

191 slightly less diffuse model, then ideally a metric will still be able to determine whether 

192 there is a general similarity in shape between the two sets of contours. At the same time, 

193 if one model is notably more diffusive than another such that the plume shape and hence 

194 contours are warped significantly in the diffuse case relative to the less diffusive case (i.e. 

195 large-amplitude noise in the diffuse case), the metric should be able to determine that 

196 there is a lack of similarity between the two and return a larger MHD score. 

197 3.2 Satellite Ocean Color Index 

198 An Ocean Color Index (OCI, Hu et al., 2012) derived from data from the Moderate 

199 Resolution Imaging Spectroradiometer (MODIS) is used as a proxy identifying riverine 

200 influenced water to evaluate the ocean model salinity fields in the vicinity of the 

201 Mississippi River. The algorithm is based on a three-band subtraction for relatively clear 

202 waters (chlorophyll a concentration < 0.25 mg m-3), but switches to a blue/green band 

203 ratio algorithm for more productive waters. These MODIS data were obtained from the 

204 NASA Goddard Space Flight Center (GSFC, http://oceancolor.gsfc.nasa.gov) and 

205 processed with the most current algorithms. This OCI product has 4km resolution and is 

206 temporally averaged over eight days. 
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207 In addition to fresh water, rivers discharge suspended sediment, Colored Dissolved 

208 Organic Matter (CDOM), and nutrients that facilitate primary productivity (chlorophyll-

209 rich phytoplankton growth). Relationships between CDOM and SSS have been 

210 previously shown using in situ data and used to harness satellite data to investigate 

211 oceanographic and esturaine waters (e.g. Hu et al., 2003; Green & Sosik, 2004; 

212 Chaichitehrani et al., 2014; Chonga et al., 2014). However, from the perspective of 

213 algorithms, it is difficult to derive an accurate CDOM product in riverine waters due to a 

214 number of reasons (e.g., uncertainties in atmospheric correction in the blue bands). As an 

215 alternative to a satellite CDOM product, the OCI is derived from an empirical algorithm 

216 that accounts for both phytoplankton and CDOM thus making it a good proxy for 

217 representation of the riverine water in the domain (Hu et al., 2004). As a river plume 

218 spreads and mixes with ambient seawater, concentrations of suspended sediment, CDOM 

219 and often phytoplankton decrease resulting in a decrease in OCI. Hence, a higher OCI 

220 tends to correspond to fresher water near the river mouth (i.e. a lower SSS value) and 

221 vice versa. Because OCI contains information about both CDOM and phytoplankton in 

222 offshore waters where suspended sediments are low, it is therefore reasonable to assume 

223 that there is a correspondence between OCI and SSS, particularly in the CDOM rich 

224 riverine waters. 

225 3.3 Numerical Models 

226 Three ocean model simulations are evaluated, two of which use the Hybrid Coordinate 

227 Ocean Model (HYCOM) and one of which uses the Regional Ocean Modeling System 

228 (ROMS). They differ in numerical methods and configuration. Of particular relevance are 

229 differences in data assimilation (assimilative or not), as this impacts representation 
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 Simulation  GoM-HYCOM  NGoM-HYCOM  DSC-ROMS 

 Data-assimilation  Data-assimilative  Free-running  Free-running 

 Horizontal 

 resolution 
 1/25°  1/50°  1km 

 River 

 parameterization 

Surface freshwater 

flux with enhanced 

 vertical diffusivity 

Surface freshwater 

flux with enhanced 

vertical diffusivity 

 and barotropic 

 adjustment 

Temperature, 

salinity and 

 momentum point 

source (or series of 

 point sources). 

 Surface forcing  NOGAPS  COAMPS  CFSR 

230  particularly of the mesoscale features in the domain  that have been shown to impact   

231  riverine water spreading in the NEGoM (e.g. Morey et al, 2003b; Schiller et al., 2011);   

232  horizontal spatial resolution, which can impact both representation   of fields and 

233  horizontal mixing; surface forcing, particularly as the wind patterns have been shown to   

234  impact riverine water distribution in the NEGoM (e.g. Morey et al., 2003a; 2003b); and   

235  parameterization of river inflow. This information is summarized in Table 1. For further    

236  information, the reader is directed to the cited references    and references therein.  

Table 1. Summary of the three model simulations.  

237   

238  3.3.1  The Gulf of Mexico Hybrid Coordinate Ocean Model  

239  The Hybrid Coordinate Ocean Model (HYCOM) is a finite-difference primitive equation   

240  hydrostatic ocean circulation model (Bleck, 2002; Chassignet et al., 2003; Chassignet, et      

241  al., 2006). It incorporates a flexible vertical coordinate system allowing smooth transition 
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242 between isopycnal, terrain-following (sigma) and pressure coordinates to meet the 

243 demands of different ocean modeling challenges, for example complex bathymetry or 

244 changing stratification. HYCOM is used operationally by the US Navy and National 

245 Ocean Atmospheric and Administration (NOAA) in the global ocean forecasting systems 

246 (Chassignet et al., 2009; Metzger et al., 2014). In this paper, a data-assimilative HYCOM 

247 Gulf of Mexico hindcast product is evaluated and will be referred to as GoM-HYCOM. 

248 The archived data were obtained from the HYCOM server (HYCOM-31.0, 

249 http://hycom.org/data/goml0pt04/expt-31pt0). The domain encompasses the full Gulf of 

250 Mexico, [-98°W, -76.4°W] and [18.9°N, 31.96°N] in longitude and latitude respectively 

251 (Figure 1). The horizontal resolution is (1/25)° of longitude by (cos(latitude)/25)° in 

252 latitude resulting in grid spacing of approximately 3.8-4.2 km. 20 vertical layers are used 

253 transitioning in the open ocean from pressure levels in the mixed layer to isopycnals 

254 below and with sigma coordinates used in shallow water. The model is forced at the 

255 lateral open boundaries with climatology fields derived from a 1/12° HYCOM model 

256 simulation of the Atlantic Ocean (Kourafalou et al., 2009). The surface forcing is 

257 provided by the Navy Operational Global Atmospheric Prediction System (NOGAPS, 

258 Rosmond et al., 2002). Data-assimilation is incorporated using the Navy Coupled Ocean 

259 Data Assimilation (Cummings, 2005). River runoff is specified at 40 locations along the 

260 coast using a monthly climatology. The river input is implemented as a virtual salt flux at 

261 the surface (Huang, 1993; Schiller & Kourafalou, 2010). The virtual salt flux, �!, is 

262 calculated from precipitation (P), evaporation (E) and river input (R), with 

263 Sf=[−(P−E)−R]S/α0 where � is the salinity in the top layer of the model and α0 is a 

264 reference specific volume. Sf is then used to calculate the salinity increment in the top 
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265 layer of the model, dS = Sf dt bclin g /dp where dtbclin is the baroclinic time step, g is 

266 gravity and dp is the layer thickness in pressure units. At each baroclinic time step, the 

267 salinity in the top layer of the model, S, is updated to account for changes due to 

268 freshening via the virtual salt flux as S(t+dtbclin) = S(t) + dS where t is time. For each 

269 river, the freshwater flux is distributed over several ocean grid points adjacent to the river 

270 source and an enhanced diffusivity is employed over a depth of 6m to mix the source 

271 water through the water column. The surface salinity is relaxed to climatology. 

272 3.3.2 The Northern Gulf of Mexico Hybrid Coordinate Ocean Model 
273 

274 A northern Gulf of Mexico free-running (non-assimilative) configuration of HYCOM 

275 (NGoM-HYCOM) has been developed (Schiller et al., 2011; Androulidakis & 

276 Kourafalou, 2013; Kourafalou and Androulidakis, 2013) with an advanced river input 

277 representation that extends the standard HYCOM code (section 3.3.1) to include 

278 momentum fluxes (in addition to salt fluxes) at the river mouth and the ability to 

279 distribute the river input both vertically at the river mouth and across estuarine cells 

280 (Schiller & Kourafalou, 2010). The domain extends across the Louisiana-Texas shelf and 

281 the Mississippi-Alabama-Florida shelf [-95.52 °W, -82.52°W] and [27.98°N, 30.70°N] in 

282 longitude and latitude respectively (Figure 1) and has 1/50° horizontal resolution. 30 

283 vertical layers are used, 15 of which are fixed in the upper 40m of the water column. The 

284 model is nested in the 1/25° data-assimilative Gulf of Mexico HYCOM model (section 

285 3.3.1) and atmospheric forcing is derived from the Coupled Ocean/Atmospheric 

286 Mesoscale Prediction System (COAMPS, Hodur et al. 2002). Daily average freshwater 

287 discharges derived from United Stated Geological Survey data are prescribed for 16 

288 rivers, with monthly climatologies imposed for the Pearl River and Mobile Bay. These 
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289 rivers are specified as point sources (or multiple point sources for the Mississippi River) 

290 and there is no relaxation to climatology. In addition, the barotropic pressure change of 

291 the water column is adjusted to take into consideration the additional pressure exerted by 

292 the additional mass, and hence volume, of the river inflow. 

293 3.3.2 The Regional Ocean Modeling System northeast Gulf of Mexico 

294 configuration 

295 The Regional Ocean Modeling System (ROMS) is a finite-difference primitive equation 

296 ocean circulation model that employs the hydrostatic and Boussinesq approximations 

297 (Shchepetkin & McWilliams, 2003; Shchepetkin & McWilliams, 2005). ROMS uses 

298 sigma coordinates in the vertical that can be stretched to allow increased resolution in 

299 areas of interest (Song & Haidvogel, 1994). 

300 The ROMS configuration’s domain encompasses the De Soto Canyon region in the 

301 northeast Gulf of Mexico (Figure 1) and will be referred to as DSC-ROMS 

302 (https://data.gulfresearchinitiative.org/data/R1.x138.080:0022/). The domain extends 

303 from the Mississippi Delta to Apalachicola Bay [-90.5°W to -84.5°W] and [27.1°N to 

304 30.7°N] in longitude and latitude respectively. 1 km resolution is used in the horizontal 

305 and 40 layers are used in the vertical with stretching designed to increase resolution near 

306 the surface and the upper part of the water column.  The model is nested in the 1/12° 

307 data-assimilative global HYCOM model and atmospheric forcing is derived from the 

308 Climate Forecast Reanalysis System (CFSR, Saha et al. 2010). The river input is treated 

309 as source terms for temperature, salinity, and momentum distributed vertically. Daily 

310 average discharges are calculated from US Geological Survey data while temperature 

311 climatology is calculated from NOAA tides and currents buoy data (Figure 2). 
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312 3.4 Diagnostics 

313 3.4.1 Procedure overview 

314 Two-dimensional contours (isolines) of select values are computed from the satellite OCI 

315 fields and SSS for each of the ocean models. The OCI generally decreases from the river 

316 sources as the riverine waters spread and mix with seawater. Conversely, the SSS values 

317 generally increase with distance from the river sources as the fresh river water mixes with 

318 the saline ambient water. These fields are thus indicators of the region influenced by 

319 riverine water, and the similarity of their spatial patterns is quantified using the MHD 

320 metric. Conducting this analysis on multiple pairings of values of SSS and OCI contours 

321 identifies the SSS-OCI relationships for each model and the differences in these pairings 

322 are utilized to compare the river plume representations between models. 

323 3.4.2 Preprocessing 

324 The satellite product and model data have differing time resolution, spatial resolution, 

325 and spatial domain bounds. To compare these data sets, the coarsest common temporal 

326 and spatial resolutions are adopted and the smallest common spatial domain is used 

327 (Figure 1). (When determining common spatial domains, regions of the nested NGoM-

328 HYCOM and DSC-ROMS in which relaxation to the parent model fields takes place are 

329 not considered as part of the model domains for analysis purposes.)  The satellite OCI 

330 dataset used in this study has the coarsest temporal resolution of the datasets with an 

331 eight-day average, as well as the coarsest spatial resolution with 4 km grid spacing. 

332 Therefore, the model data are temporally averaged over eight days and regridded to the 

333 satellite product’s 4km grid using a nearest neighbor average. The land and cloud masks 

334 from the satellite data are then applied such that only areas with data present in all 
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335 products are compared at each time. The smallest common spatial domain is determined 

336 by the DSC-ROMS model for the eastern and western boundaries and the NGoM-

337 HYCOM for the southern boundary. The northern boundary is bounded by the 

338 Mississippi-Alabama-Florida coastline. The resultant domain bounds used are therefore [-

339 89.5°W,-84.5°W] and [28°N, 30.7°N] in longitude and latitude respectively, and only 

340 contours within this region are compared. 

341 3.4.3 Application of the Modified Hausdorff Distance 

342 To compare the models with the satellite data, the similarity between contours of 

343 OCI from the satellite data and contours of SSS from each of the models is quantified by 

344 calculating the MHD. An example of a satellite OCI field and a model SSS field and 

345 corresponding MHD values for pairs of SSS-OCI contours at a particular time are shown 

346 in Figure 5. As the SSS increases, the value of the OCI with the smallest MHD increases 

347 reflecting the inverse relationship between SSS and OCI (Figure 5c). In this example, 

348 fresher (higher OCI) contours are found closer to the coastline where they are similar in 

349 shape leading to smaller MHD values. Further from the shore, the higher salinity (lower 

350 OCI) contours have more complex shapes that are less similar and the MHD values for 

351 OCI-SSS pairings that most closely match reflect this lack of similarity by increasing 

352 correspondingly. 

353 While both are good indicators of riverine-influenced water, the functional 

354 relationship between SSS and OCI values is not known. To determine this relationship 

355 empirically for each models’ SSS field, the MHD is calculated for all pairs of OCI-SSS 

356 contour values, as shown by the example in Figure 5. The MHD values are then averaged 
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357 

358 Figure 5. Contours of satellite OCI (a) and SSS from the DSC-ROMS (b) for a particular 8-

359 day average (1-8 June 2012). (c) The corresponding MHD values for each SSS-OCI pair, 

360 with SSS on the horizontal axis and OCI value indicated by marker color. A smaller MHD 

361 indicates a better correspondence between the SSS and OCI contours. There is a decrease in 

362 OCI values associated with lowest MHD for each SSS value with increasing salinity, 

363 suggestive of an OCI-SSS functional relationship. Smaller values of MHD scores for the best 

364 pairings are found for lower SSS and higher OCI values, as these values are indicative of 

365 waters closer to the shore and river source where there is less spatial variation in the contours. 

366 Higher SSS and lower OCI values are generally found further from the coast where the 

367 contours are less similar in shape and location as demonstrated by higher MHD scores. 
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368 over time for each OCI-SSS pairing. The best pairings (lowest MHD) over all times are 

369 then identified and a polynomial is fit to these data. This yields an empirical functional 

370 relationship between SSS and OCI for each model.  Inspection of the MHD for these 

371 optimum OCI-SSS pairings also provides information about the model agreement with 

372 the satellite data. 

373 3.4.4 Areal Coverage 

374 To compare with the MHD analysis, the sizes of the areas enclosed by various 

375 surface salinity contours around the river source are calculated. Inspection of synoptic 

376 fields of the SSS in the region suggests that the area contained within select contours of 

377 SSS may be a good indication of the area influenced by the riverine waters at a given 

378 time (Figure 4). Dukhovskoy et al. (2015) show that this metric performs poorly when 

379 trying to rank models by shape because very different shapes may have the same area. 

380 While it may not be suitable for distinguishing shape, the area metric can still be applied 

381 to ascertain differences among model simulations of fresh riverine water near the surface. 

382 For each model the area of water in the domain with SSS less than 30.0 and 34.5 (the 

383 lowest and highest SSS values considered in the MHD analysis) are calculated. These 

384 areas are then compared, both between models and to the analysis of the best OCI-SSS 

385 pairings as determined by the MHD analysis. 

386 4 Results 

387 4.1 Qualitative representation of the plume 

388 The seasonality of surface salinity in the region, characterized by summer 

389 spreading and winter retraction (Walker et al., 1996; Morey et al., 2003a; Androulidakis 

21 



 

        

     

    

     

 

    

     

      

   

       

 

     

   

 

    

   

  

       

      

  

    

      

   

390 & Kourafalou, 2013) is evident in the satellite OCI and model SSS contours (Figures 3 

391 and 4). During the fall and winter OCI and SSS contours are often compacted near the 

392 coast as northwestward prevailing winds drive a coastally trapped current. During the 

393 spring and summer, generally northward winds allow spreading to the east consistent 

394 with Ekman drift, where mesoscale circulation features over this deeper region can 

395 transport the low salinity water further south (Morey et al., 2003b).  Features such as 

396 filaments and smaller scale structures and undulations in the contours can be seen in the 

397 model SSS and OCI contours at the 4 km resolution, although model fields have 

398 increased complexity at their higher native resolutions. 

399 In general, the near shore riverine waters correspond to values of OCI of 5 and 

400 above.  Further from the Mississippi Delta (the far field), values of OCI less than 0.35 

401 approach the values of the ambient Gulf of Mexico waters making the full extent of the 

402 river plume difficult to distinguish. The optical properties of the offshore waters of the 

403 Gulf of Mexico have a distinct seasonal cycle largely due to changes in the mixed layer 

404 (e.g. Muller-Karger, et al., 2015). OCI values between 0.37 and 12.19 are taken to be 

405 representative of riverine water in the region and 15 values in this range, selected 

406 incrementally on a logarithmic scale, are compared to model SSS contours. 

407 Contours of SSS values from 30-34.5 with increments of 0.25 are computed from 

408 the re-gridded model data. This range spans waters from the edges of the near field plume 

409 to the outer far field where riverine waters have largely mixed with the open ocean waters 

410 and approach the ambient salinity of the offshore Gulf of Mexico. The structure of the 

411 plume varies between the models (Figures 3 and 4): GoM-HYCOM, the coarsest native 

412 resolution model with climatological river forcing, generally has a broad spread of 
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413 smoother contours, with little clustering and few small scale variations. NGoM-HYCOM 

414 and DSC-ROMS, with increased native resolution and high frequency river forcing, show 

415 some additional detail in the contours and smaller scale features such as filaments. DSC-

416 ROMS tends to have more of the lower salinity riverine water pushed further offshore 

417 compared to the GoM-HYCOM and NGoM-HYCOM in which the lower salinity riverine 

418 water does not generally extend as far offshore. 

419 4.2 Comparison of MHD scores between models 

420 The MHD scores for all OCI-SSS contour pairings are calculated for each model 

421 and each eight-day segment for the time period February 2010-February 2013, the 

422 longest time common to all data sets. For each of the 285 OCI-SSS pairings per model, 

423 the MHD scores are averaged over time resulting in one MHD score per pair per model 

424 (Figure 6 a-c). For a given SSS, the OCI value that yields the minimum MHD score (i.e. 

425 best match) can be identified (and vice versa). This provides a set of best pairings that 

426 can be compared between models. It should be noted that there is not an exact one-to-

427 one correspondence between the pairings based on minimum MHD distances computed 

428 for each SSS contour and for each OCI contour. This is due to the spacing between 

429 values of the SSS and OCI contours chosen for this analysis. For example, in one region, 

430 several SSS contours may cluster in between more widely spaced OCI contours. The OCI 

431 contours will only be closest in shape to one SSS contour but two SSS contours may have 

432 the same OCI contour that is closest in shape. As the resolution of the SSS and OCI space 

433 increases, this discrepancy in the correspondence will likely decrease. However, using a 

434 substantially finer resolution of the SSS and OCI values will increase the computational 
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435 cost of the analysis given the already large number of combinations tested for each of the 

436 three models over the three year period. 

437 For the best pairings, the minimum MHD scores range from 20-40 km (Figure 6d) 

438 with smaller values for the GoM-HYCOM and NGoM-HYCOM than DSC-ROMS by 

439 approximately 5-15 km. This indicates a better correspondence of GoM-HYCOM and 

440 NGoM-HYCOM simulated SSS spatial patterns with the satellite OCI data across a broad 

441 range of OCI values. The exception is for very low salinity and high OCI values, where 

442 DSC-ROMS has lower MHD scores. 

443 The OCI-SSS value pairs that give the best MHD scores are not the same for each 

444 model. Variations among the best OCI- SSS pairings can be used to analyze the 

445 differences between riverine water distributions and salinity biases between models. 

446 4.3 SSS and OCI relationships 

447 The optimal pairings, identified by the minimum MHD scores, are compared 

448 between models (Figure 6). For a specified SSS value, a lower OCI value for the model 

449 in the best pairings indicates that the SSS contours are generally further offshore when 

450 compared to the other models and vice versa. Alternatively, for a specified OCI value, a 

451 lower SSS value in the best pair for a model indicates that model has a low SSS bias 

452 relative to the other models.  

453 
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454 

455 Figure 6: (a)-(c): Time averaged MHD values (indicated by the color of each dot) for each 

456 SSS-OCI pairing for each model. Black circles represent the OCI value at which the MHD is 

457 minimum for a given SSS and the black crosses represent the SSS value at which the MHD is 

458 minimum for a given OCI. These symbols, therefore, represent the best pairings, as 

459 determined by the MHD, and can be interpreted for each model as OCI as a function of SSS 

460 (black circles), or SSS as a function of OCI (black crosses). The back lines show the 

461 monotonic quadratic fit (Appendix A) to the best pairings for each model (excluding values at 

462 the limits of the ranges of OCI and SSS contours tested). (d): The MHD for each SSS and 

463 corresponding best match OCI value. These MHD values are generally smaller for GoM-

464 HYCOM and NGoM-HYCOM than DSC-ROMS indicating a better correspondence with the 

465 OCI data, except for very low salinities where the DSC-ROMS SSS contours more closely 

466 match the OCI data. 
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467 DSC-ROMS has a lower OCI for a given SSS (and lower SSS for a given OCI) 

468 when compared to GoM-HYCOM and NGoM-HYCOM. Therefore, DSC-ROMS tends 

469 to simulate fresher water further offshore and tends toward a low SSS bias in this region 

470 compared to the other models. At the other end of the spectrum, analysis of the NGoM-

471 HYCOM yields the highest OCI for a given SSS, and higher SSS for a given OCI. 

472 Therefore, the model tends to have a high SSS bias relative to the other models over this 

473 region of freshwater influence. Thus, overall, from DSC-ROMS to GoM-HYCOM to 

474 NGoM-HYCOM the salinity bias moves from fresher to more saline. 

475 All model river representations show a transition from high to low SSS as OCI 

476 increases. Considering SSS as a function of OCI defined by the best pairings (Figure 6), 

477 the SSS values change very abruptly over OCI values from 1 to 2 for DSC-ROMS 

478 indicating a more rapid variation in SSS, or a more compact salinity front, compared to 

479 the other two models. Furthermore, the transition from low to high salinity water begins 

480 at a lower OCI (further from the river source) for DSC-ROMS than for GoM-HYCOM 

481 and NGoM-HYCOM. GoM-HYCOM displays a broader transition over a wider range of 

482 OCI values than NGoM-HYCOM indicating less defined fronts. This is expected given 

483 the lower resolution of GoM-HYCOM, its specification of river input from climatology 

484 as opposed to daily measured discharge rates and parameterization of rivers using surface 

485 salinity relaxation. 

486 Empirical functions describing the relationship between SSS to OCI were derived 

487 from the best pairings for each model (Appendix A). For each model, a quadratic 

488 function is fit to all of the best pairings including both those derived from the OCI that 

489 yields the minimum MHD for a given SSS and those derived from the SSS that yields the 
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490 minimum MHD for a given OCI (more detail may be found in Appendix A). The 

491 functions generally indicate a faster rate of change of OCI with SSS at higher SSS values 

492 for NGoM-HYCOM and GoM-HYCOM than for the DSC-ROMS simulation (Figure 6). 

493 This may be an indication of generally enhanced lateral mixing in the HYCOM 

494 simulations compared to the ROMS simulation. 

495 A picture of the differences in the plumes can be built from the MHD analysis, with 

496 DSC-ROMS simulating a large area of low salinity water with a sharp transition to high 

497 salinity water and GoM-HYCOM displaying a broader transition from low to high 

498 salinity water. NGoM-HYCOM tends towards lower SSS values than GoM-HYCOM, 

499 and the riverine water does not spread as far across the domain in NGoM-HYCOM 

500 compared to GoM-HYCOM. These characteristics are further corroborated by analysis of 

501 the areal extent of low salinity waters that follows. 

502 4.4 Areal extent of low salinity water 

503 Visual inspection of model SSS contours (Figure 4) suggests that there are 

504 systematic differences between models in the area of very low salinity water (SSS<30) 

505 and overall amount of riverine-influenced water (SSS<34.5).  This is confirmed 

506 quantitatively in the analysis of the SSS-OCI pairings (Figure 6) discussed in Section 4.3.  

507 To further characterize this aspect of the model salinity fields, the area of the ocean 

508 model surface with salinities less than prescribed thresholds are computed for each 8-day 

509 time-averaged field (Figure 7). DSC-ROMS has the largest area of very low salinity 

510 water (SSS<30.0) at all times. This is consistent with the greater spreading of the riverine 

511 water offshore diagnosed from the SSS-OCI pairing analysis. The total area of riverine-

512 influenced water (as defined by SSS<34.5) is greatest for GoM-HYCOM, followed by 
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513 

514 

515 Figure 7: Area of the domain at the surface where SSS less than the values given in the 

516 legend, scaled by the total domain area (a/A), where a is area with SSS less than the values 

517 given in the legend and A is the total area of the ocean within the domain). DSC-ROMS has 

518 the greatest area of fresher riverine water (SSS<30.0) and GoM-HYCOM the greatest total 

519 area of riverine influenced water (SSS<34.5). 

520 DSC-ROMS and then NGoM-HYCOM. The largest area of riverine water (SSS<34.5) 

521 for GoM-HYCOM may suggest that horizontal spreading and/or mixing processes are 

522 stronger in this model. In addition, the relaxation of surface salinity to climatology 

523 present in GoM-HYCOM enhances the presence of a low salinity pool along the northern 

524 Gulf. Note that in all models there is more fresh water in summer than in winter (Figures 
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525 3, 4 and 7), which is consistent with reported seasonal variability (Walker et al., 1996; 

526 Morey et al., 2003; Androulidakis & Kourafalou, 2013). It should be noted, however, that 

527 while the areal extent measured quantifies the area of low salinity and riverine-influenced 

528 water in the region, it cannot be used independently to determine similarity in shape of 

529 the riverine water. Instead it must be coupled with a visual inspection and/or an MHD 

530 analysis to determine the shape and location of the contours. This highlights the 

531 advantage of the MHD for automation of the quantification of the similarity in shape 

532 between the contours without the need for visual inspection. 

533 5 Discussion and Summary 

534 Borrowing from the field of topology, the MHD has been introduced and 

535 demonstrated as a tool for quantitative comparison of ocean model fields to satellite 

536 remotely sensed data. This approach provides a method to quantify the agreement in 

537 shape and spatial structure between fields of either similar or different but related 

538 variables as well as producing an empirical relationship between the variables. Typically 

539 in ocean modeling, satellite optical data have been used to qualitatively compare features 

540 in geophysical fields that are known to manifest changes in the ocean color. By focusing 

541 on shape characteristics, the MHD showcased here provides a numerical metric to 

542 complement this qualitative comparison. 

543 The applicability of the MHD has been demonstrated in this work through an 

544 analysis of the agreement of the temporal and spatial variability of modeled SSS contours 

545 with satellite OCI contours in the vicinity of a large river. A large number of MHD 

546 values have been calculated for pairings of multiple SSS and OCI levels at eight-day 
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547 intervals over a three-year time span, and this information has been condensed into a set 

548 of best OCI-SSS pairings for each model. These provide a means to evaluate how well 

549 different models simulate the spatial structure and temporal evolution of the salinity field, 

550 and to better understand systematic differences (biases) between the models. 

551 Specific differences among the tested models revealed by the MHD analysis 

552 include: 1) Lower salinity water is found further offshore in the DSC-ROMS model than 

553 in either of the HYCOM models as revealed by the closer matches between lower SSS 

554 contour values and the higher OCI contour values that are typically further from the river 

555 source. 2) SSS contours for GoM-HYCOM are more broadly spaced than in DSC-ROMS 

556 and NGoM-HYCOM as shown by the slower variation of SSS with OCI for the 

557 relationship inferred by the set of best pairings. 3) NGoM-HYCOM has the best overall 

558 match between the shapes of contours of surface salinity and OCI, followed closely by 

559 the GoM-HYCOM and then the DSC-ROMS as shown by the lowest MHD values in the 

560 optimum SSS-OCI relationships calculated for each model. These results agree with the 

561 visual analysis of the SSS fields and provide a quantitative assessment of the comparison 

562 between the models and observations. Furthermore, these findings are in agreement with 

563 the ability of NGoM-HYCOM to represent details in the development and evolution of 

564 the Mississippi River plume (Androulidakis et al., 2015), as evidenced from comparisons 

565 with various other data sources (e.g. Kourafalou and Androulidakis, 2013; Smith et al., 

566 2016). 

567 There are many factors that can affect the simulation of a river plume in models with 

568 different numerics and configurations. Important differences between models that impact 

569 the dynamics and horizontal spreading of a river plume include among other factors 
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570 surface forcing (data sources and flux calculations), river parameterization, horizontal 

571 and vertical mixing parameterizations, and spatial resolution. For example, the river 

572 parameterization in DSC-ROMS prescribes a lateral flux of volume and momentum of 

573 fresh water, whereas GoM-HYCOM relaxes the surface salinity in a region surrounding 

574 the river source, which is distributed with depth, and NGoM-HYCOM further corrects 

575 the pressure to account for the mass influx.  The momentum and volume fluxes at the 

576 river source may be responsible for the greater offshore penetration of the very low 

577 salinity water in DSC-ROMS compared to the two HYCOM simulations. Alternatively, 

578 river discharge rates are prescribed differently among the models, which may also 

579 account for these differences. The coarser spatial resolution for GoM-HYCOM may lead 

580 to more horizontal diffusion and hence weaker salinity gradients inferred from the MHD 

581 analysis. A sound investigation of these influences is beyond the scope of this study. 

582 However, the MHD offers a diagnostic that would be highly advantageous for such an 

583 analysis as it permits objective quantitative skill assessment across models with different 

584 river parameterizations and/or within one model for sensitivity testing. 

585 The MHD values for the best contour pairings indicate that GoM-HYCOM and 

586 NGoM-HYCOM have a closer match overall in shape of SSS contours with the satellite 

587 OCI contours in comparison to the DSC-ROMS model. As GOM-HYCOM is data 

588 assimilative, it most likely better represents the mesoscale features that transport low 

589 salinity water. NGoM-HYCOM also benefits from the good representation of these 

590 features, as it is nested within GoM-HYCOM. Both NGoM-HYCOM and DSC-ROMS 

591 are free-running models nested in data-assimilative ocean models. Differences in the 

592 nesting procedures, the location of the nesting boundaries and the product the model is 
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593 nested in may impact how the outer model constrains the mesoscale eddy influences. 

594 Significant effort has been placed on parameterization of river inflow in the NGoM-

595 HYCOM, which has been previously assessed with in situ SSS measurements (e.g. 

596 Kourafalou and Androulidakis, 2013; Androulidakis and Kourafalou, 2013; Ghani et al., 

597 2014). These are important factors for achieving a better match in shape to the satellite 

598 optical observations. 

599 Though the surface salinity in the vicinity of large rivers is linked to structures 

600 evident in satellite ocean color imagery, it is important to note that without robust 

601 analysis of in situ measurements within the specific region of study one cannot determine 

602 which model’s agreement to the satellite data is truly “best”. In an example of such an 

603 exercise, Chaichitehrani et al. (2014) derived CDOM and SSS relationships from in situ 

604 observations which were used to calculate CDOM from a numerical model SSS output. 

605 The model-derived CDOM was compared to satellite-derived CDOM qualitatively and 

606 the model-derived values used to study the factors that affect CDOM distribution. With 

607 the MHD, an additional step could be included which would allow quantitative 

608 comparison of the satellite-derived CDOM with the model-derived CDOM and 

609 determination of an empirical relationship. 

610 Application of the MHD analysis technique to synoptic maps of salinity produced 

611 from in situ surveys could yield functional relationships between OCI and SSS that could 

612 enhance the utility of this procedure to evaluate models.  Another benefit of the MHD 

613 metric is that it can also be readily used to evaluate model fields with satellite 

614 observations of the same variable providing valuable information on the simulated spatio-

615 temporal evolution of the surface fields, even when significant biases exist between the 
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616 model and satellite observations, as is now commonly the case with simulated 

617 biogeochemical fields as well as satellite salinity observations. Furthermore, the MHD 

618 provides the comparison between the datasets without the need for visual inspection, 

619 allowing automation, as well as quantification. Finally, since the MHD provides a robust 

620 metric indicating the agreement between simulated variables and observations, it may be 

621 possible to utilize this metric to construct a cost function to be used in an adjoint data 

622 assimilation method, allowing assimilation of a wealth of satellite data that are presently 

623 underutilized in ocean modeling. 

624 
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638 Appendix A.  Fitted OCI-SSS Functional Relationships 

639 For each model, a quadratic function is fit to all of the best pairings including both 

640 those derived from the OCI that yields the minimum MHD for a given SSS and those 

641 derived from the SSS that yields the minimum MHD for a given OCI (both plus and 

642 circle symbols in Figure 6).  Pairings corresponding the minimum and maximum SSS and 

643 OCI values considered in the analysis (boundary rows and columns in Figure 6a-d) are 

644 excluded to avoid limiting cases impacting the fit.  The quadratic functions are 

645 constrained to be monotonic over the range of SSS and OCI values tested.  The resulting 

646 quadratic functions fit to the optimum pairings are: 

647 GoM-HYCOM: OCI = -0.11 (SSS)2 + 5.42 (SSS) – 53.63 (A.1) 

648 NGoM-HYCOM: OCI = -0.38 (SSS)2 + 23.01 (SSS) - 337.02 (A.2) 

649 DSC-ROMS: OCI = -0.04 (SSS)2 +1.30 (SSS) – 1.26 (A.3) 
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